

Advanced Distributed Learning (ADL)

Cross-Domain Scripting Issue

Version: 1.0

October 13, 2003

Available at:
www.adlnet.org

This page intentionally left blank.

FOREWORD

This document defines and presents several solutions to the cross-domain scripting security issue
with a Sharable Content Object (SCO)’s ECMAScript (i.e. JavaScript) access to a Sharable
Content Object Reference Model (SCORM) Application Program Interface (API) Instance. It
is technical in nature and is meant for IT specialists and learning management system (LMS)
vendors. The solutions herein were submitted by or derived from members of the ADL
Community. See Appendix C for additional documentation on the Cross-Domain Scripting
Issue.

During the development and publication of this document, the ADL Community submitted
several additional cross-domain solutions. These solutions will be evaluated and tested for
inclusion in a future version of this document.

This document may be modified or superceded as work proceeds. Comments, suggestions and
alternative solutions for inclusion in a future version of this document are welcome.

This page intentionally left blank.

- i -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

COPYRIGHT

Copyright 2003 Advanced Distributed Learning (ADL). All rights reserved.

DISTRIBUTION

Permission to distribute this document is granted under the following conditions:

1. The use of this document, its images and examples is for non-commercial, educational or
informational purposes only.

2. The document, its images and examples are intact, complete and unmodified. The
complete cover page, as well as the COPYRIGHT, DISTRIBUTION and
REPRODUCTION sections are consequently included.

REPRODUCTION

Permission to reproduce this document completely or in part is granted under the following
conditions:

1. The reproduction is for non-commercial, educational or informational purposes only.

2. Appropriate citation of the source document is used as follows:

a. Source: Advanced Distributed Learning (ADL), Cross-Domain Scripting Issue
Paper, October 2003. Available at http://www.adlnet.org.

For additional information or questions regarding copyright, distribution and reproduction,
contact:

ADL Co-Laboratory
1901 North Beauregard Street
Alexandria, VA 22311
USA
(703) 575-2000

- ii -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

This page intentionally left blank.

- iii -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

Key ADL Technical Team Contributors to the ADL Cross-Domain Scripting Issue

Paper:

William Capone Mary Krauland
Clark Christensen Jeff Krinock

Philip Dodds Lori Morealli
Jeff Falls Angelo Panar

Dexter Fletcher Douglas Peterson
Matthew Handwork Jonathan Poltrack

Rob Harrity Betsy Spigarelli
Sue Herald Schawn Thropp

Alan Hoberney Bryce Walat
Paul Jesukiewicz Jerry West

Kirk Johnson

Key ADL Community Contributors to ADL Cross-Domain Scripting Issue Paper:

Judy Brown Tyde Richards
Ed Cohen Paul Roberts

Jonathan Dean Robby Robson
Jeffrey Engelbrecht Eric Rosen
Lenny Greenberg Steve Slosser

Albert Ip Roger St. Pierre
Boyd Nielsen Brian Taliesin

Michael Norberg John Toews
Claude Ostyn Jeff Webb

…and many others.

ADL would also like to thank the ADL Community for their contributions to the ADL Cross-
Domain Scripting Issue Paper.

- iv -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

This page intentionally left blank.

- v -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

1.1 Description.. 1
2.0 SCORM API OVERVIEW... 2
3.0 CROSS-DOMAIN SCRIPTING SCENARIOS ... 3

3.1 One LMS/Content Server ... 3
3.2 Separate LMS Server and Content Server .. 4
3.3 Central LMS Server and Distributed Content Servers.. 5
3.4 Several LMS Servers and Distributed Content Servers.. 6

4.0 CROSS-DOMAIN SCRIPTING SOLUTIONS ... 6
4.1 Locate Content on LMS Server or in LMS’s Domain .. 7
4.2 SCO-Fetcher ... 7
4.3 Proxy Configuration (Virtual Server) ... 9
4.4 URL Rewrite... 11
4.5 Manipulation of document.domain... 12
4.6 SCO URL Callback Technique... 14
4.7 Signed Java Applet Solution... 15
4.8 Run-Time Service on Content Server ... 16

APPENDIX A: ACRONYM LIST.. 4-1
APPENDIX B: RTS TO LMS COMMUNICATION... 4-1
APPENDIX C: REFERENCES .. 4-1
APPENDIX D: EXAMPLE CONFIGURATION FILES ... 4-1

- vi -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

This page intentionally left blank.

- 1 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

1.0 INTRODUCTION

This concept paper is being provided to the ADL Community to clarify browser security issues
pertaining to a Sharable Content Object (SCO)’s communication through a Sharable Content
Object Reference Model (SCORM®) Application Program Interface (API) Instance. In the
SCORM model, SCOs communicate with an LMS using ECMAScript via an LMS-provided API
Instance. When a launched SCO and its LMS-provided API Instance are hosted on different
domains, browser security restrictions prevent the ECMAScript API calls, thus prohibiting
communication. Through collaboration with several members of the ADL Community and
internal prototyping efforts, the ADL Technical Team has tested several different solutions to
this problem and is providing them to the ADL Community at large. This paper details the
Cross-Domain Issue and presents several known and tested solutions.

1.1 Description

In the SCORM Run-Time Environment (RTE), an LMS launches content objects by way of
Hypertext Transfer Protocol (HTTP) in a Web browser. Typically, launched content resides in a
frameset provided by the LMS or in a browser window opened by the LMS. A SCO that wishes
to communicate with the LMS must find an LMS-provided API Instance. The SCORM requires
that the API Instance reside in a predefined location in the browser’s Document Object Model
(DOM) hierarchy or window opener’s hierarchy. Once the API Instance is located, the SCO is
free to invoke calls on a set of predefined methods (the SCORM API) that provide execution
management, state management and data transfer.

If the LMS-provided API Instance and the SCO originate from the same domains and have the
same protocol, e.g. https, there are no issues. To clarify, a “hostname” is an ASCII string (e.g.
“xyz.abc.com”), which consists of a local part (“xyz”) and a domain name (“abc.com”). A group
of computers whose hostnames share a common suffix have the same “domain name” and are
not susceptible to the SCORM cross-domain scripting issue. For instance, if an LMS server and
a content server are both located in the “abc.com” domain or are actually the same server as
illustrated in Figure 1.1a, there are no security issues when the content attempts to use the API
Instance. All API methods described in the SCORM are available without security concerns.

Client Side

LMS Server

Web Browser

API Adapter
SCO

(Content)
Javascript

Domain: abc.com

Server Side

Figure 1.1a – LMS and content server on same domain

- 2 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

On the other hand, if the content server is located in a different domain than the LMS-provided
API Instance, an ECMAScript security exception will result when methods are invoked on the
API Instance. The ECMAScript security exception occurs for viable and documented security
reasons. Historically, programmers with malicious intent could steal sensitive information from
users’ browsers with ECMAScript. This was possible due to security holes in the browser.
Developers at the time recognized the vulnerability that cross-domain scripting could create if it
was permitted. In response to this vulnerability, the “Same Origin Policy” was established. The
policy defines an “origin” as the combination of a document’s protocol and domain. Documents
are restricted from accessing another document’s DOM if the other document has a different
“origin.” It is important to note that this restriction is a deliberate feature, not a bug. Figure 1.1b
illustrates a case where a security violation would occur when a SCO attempts to use the LMS-
provided API Instance.

Client Side

Content Server

Web Browser

API Adapter SCO
(Content)

JavaScript Communication is restricted

Domain: abc.com

LMS Server

Domain: xyz.com

Server Side

X

Figure 1.1b – LMS and Content server on different domains

The fact that cross-domain scripting causes a security violation may directly affect SCORM
implementation. The remainder of this paper will discuss several cross-domain scripting
scenarios and solutions. Each scenario can be solved in multiple ways, so there is no one-size-
fits-all solution. SCORM implementers will need to evaluate their specific environment and
content deployment needs to select or develop an appropriate solution.

2.0 SCORM API OVERVIEW

The SCORM Run-Time Environment Model requires that SCOs communicate with the LMS via
ECMAScript through the SCORM API. This requirement, in certain content deployment
scenarios, results in the cross-domain scripting issue. The following section provides an
overview of the SCORM API for SCO to LMS communication. The information is taken from
the SCORM Version 1.2, available at ADLNet.org. All information presented in this section
references the SCORM Version 1.2; however, it also applies to the SCORM Version 1.3.

The use of a common API fulfills many of the SCORM’s high-level requirements for
interoperability and reuse. It provides a standardized way for SCOs to communicate with LMSs,

- 3 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

yet it shields the particular communication implementation from the content developer. In its
simplest terms, an API is merely as set of predefined methods that the SCO can rely on being
available. An API hides implementation details from SCOs and thus enables reuse and
interoperability.

The SCORM Version 1.2 defines a SCO’s responsibility in regards to the API as follows:

SCOs must be launched in a browser window that is a child window or a child frame of the
LMS-provided window that contains the API Instance. It is the responsibility of the SCO to
establish communication with the LMS by finding the API Instance and invoking the
LMSInitialize(“”) API method. Once communication with the LMS is established, the SCO may
invoke other API methods as desired until the SCO wishes to end communication with the LMS
by invoking the LMSFinish(“”) API method.

The SCORM Version 1.2 details the following requirements for LMSs related to the API:

 An API Instance must be provided by the LMS.
 The only supported mechanism for API interaction from SCOs is through ECMAScript

calls.
 The API Instance must be accessible via the DOM as an object named “API”.

As described above, the LMS is responsible for providing an API Instance and a SCO is
responsible for establishing communication with the LMS through that API Instance. When the
API Instance and the SCO originate from the same domain, the communication is
straightforward. However, in certain systems, the SCO may not originate from the same domain
as the API Instance, thus the “Same Origin Policy” mentioned earlier comes into effect.

3.0 CROSS-DOMAIN SCRIPTING SCENARIOS

The following scenarios detail multiple configurations where the SCORM is in use today. Some
of these scenarios are vulnerable to the cross-domain scripting issue. Recommended solutions
for each scenario are listed in Section 4.0. This is not a comprehensive list, but is generalized to
encompass the majority of situations in use today. Section 4.0 will detail the ADL prototyped
solutions submitted by the ADL Community and provide insight on which solution to use based
on the following generic scenarios.

3.1 One LMS/Content Server

A typical SCORM environment used today involves one server that executes the LMS software
and houses the SCORM content. This environment is typically not susceptible to the cross-
domain issue. Figure 3.1a depicts the One LMS/Content Server scenario. In this particular
illustration, there is no cross-domain scripting issue.

- 4 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

Client Side

LMS Server

Web Browser

API Adapter
SCO

(Content)
Javascript

Domain: abc.com

Server Side

Figure 3.1a – One LMS/Content server with no virtual IP addresses

3.2 Separate LMS Server and Content Server

Another scenario characteristic of many SCORM environments in use today deals with separate
LMS and content servers. Many times, separate LMS and content servers are used due to
bandwidth concerns, digital rights management, SCO maintenance or security issues. For
example, a content server may be configured to run a specific application server (e.g., a
JavaServer Pages (JSP) Application Server). For this reason, a learning network may be set up
so that the LMS server runs only the LMS software and is not bogged down with the burden of
compiling JSPs to Servlets, then Servlets to byte code. Separating the content server and the
LMS server, in this case, frees up the LMS server to handle many students while pushing the
dynamic content delivery to a content server, thus freeing up bandwidth and speeding up end
users’ learning experience. This state of affairs can cause a cross-domain security restriction.
Figure 3.2a illustrates the LMS Server and Content Server scenario.

Client Side

Content Server

Web Browser

API Adapter
SCO

(Content)

Domain: abc.com

LMS Server

Domain: xyz.com

Server Side

X

Figure 3.2a – Separate LMS server and Content Server

- 5 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

3.3 Central LMS Server and Distributed Content Servers

Yet another scenario characteristic of many SCORM environments employs several content
servers managed by a centralized LMS. This scenario is similar to the environment discussed in
Section 3.2. However, several other complications may arise due to the variety of network
architectures used to create this environment. For example, the content servers may be located
on secure networks behind firewalls. Also, the network of distributed content servers may not be
“known” by the LMS prior to “course import.” Both of these additional constraints will assist in
determining the solution that best fits an individual situation. Figure 3.3a illustrates the generic
scenario without regard to any additional constraints.

Client Side

Web Browser

API Adapter
SCO

(Content)

LMS Server

Domain: xyz.com

Server Side

Content Server

Domain: foo.org

Content Server

Domain: abc.com

Content Server

Domain: bar.net

Content Server

Domain: xyz.com

X

Figure 3.3a – Central LMS with distributed content servers

The scenario depicted above is common in learning networks where end users may be using the
LMS and its courses while behind a firewall. This architecture is often put in place to meet
certain restrictions defined in the Department of Defense’s mobile code policy. This policy
defines mobile code as “software obtained from remote systems outside the enclave boundary,
transferred across a network, and then downloaded and executed on a local system without
explicit installation or execution by a recipient.” Many secure networks filter out mobile code
before it can be executed in a user’s browser. So, if content served from a remote content server
located outside a network’s firewall contains mobile code, this code is filtered out by the network
security measures, which may render the content useless or incomplete.

Many times, content is developed using code that is restricted by the mobile code policy, but is
known to be safe. To allow this mobile code to execute properly in a SCORM environment,
several content servers are set up behind each firewall. These content servers are mirrors, each
holding the same content as the others. When a user accesses the LMS and selects content for

- 6 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

delivery, the LMS server determines which network the user is accessing the LMS from and then
delivers content from a content server behind the same firewall as the user. This allows mobile
code embedded in content to be executed by the user instead of being filtered out by a firewall
(e.g. Microsoft ActiveX Components).

3.4 Several LMS Servers and Distributed Content Servers

When one considers the concept of reusability, another variation of a scenario involving a
network of distributed content servers surfaces. In this case, the same distributed content server
network is presented. Furthermore, the additional constraints considered in Section 3.3 also
apply to this scenario. The characteristic that makes this scenario unique is the consideration that
multiple LMSs may utilize the same content servers. For example, some content depends on
specific application servers to execute correctly. Several content developers host their content on
in-house servers, configured specifically to execute the developers’ content. Many of these
courses may be general enough that they can be used in multiple arenas and consequently may be
accessed by several LMSs. Figure 3.4a depicts two LMS servers that host content from a
distributed network of content servers.

Client Side

 Web Browser

API AdapterSCO
(Content)

LMS Server

Domain: xyz.com

Server Side

Content Server

Domain: foo.org

Content Server

Domain: abc.com

Content Server

Domain: bar.net

Content Server

Domain: xyz.com

LMS Server

Domain: lms.com

 Web Browser

API Adapter
SCO

(Content)X X

Figure 3.4a – Several LMS servers and Distributed Content servers

Again, this scenario does not account for aspects such as firewalls. If this architecture applies,
several solutions can be selected, but any additional constraints should be considered before a
final cross-domain scripting solution is selected.

4.0 CROSS-DOMAIN SCRIPTING SOLUTIONS

This section details a number of solutions to the cross-domain scripting issue. Each subsection
includes a list of pros and cons to be considered before selecting that particular solution. Some

- 7 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

solutions may not adhere to a specific organization’s IT policies, while others may require an
undesired end user intervention to experience learning content. All of the solutions below should
be evaluated and the “best fit” should be selected. The pros and cons are not intended to be a
complete list, but an overview of some of the complications that may occur during deployment
of a specific solution. To assist in the selection of a specific solution, the generic scenarios
presented in Section 3.0 are considered below. The ADL Technical Team is also accepting
comments and suggestions for possible inclusion in an update to this document. All members of
the ADL Community are encouraged to submit solutions or additional issues through the Help &
Info Center on ADLNet.org. The solutions listed below are not to be considered a
comprehensive list, but rather a subset of possible solutions based on the practices that are most
commonly used today. There is no significance of the order of the following solutions. They are
presented in an arbitrary order.

4.1 Locate Content on LMS Server or in LMS’s Domain

Locating the content (or at a minimum, the SCOs) on the LMS server or in the LMS server’s
domain will avoid the cross-domain scripting problem. If this type of configuration is acceptable
and feasible for a specific situation, this solution is lightweight and fairly easy to implement.

Applicable Generic Scenario(s)

 Section 3.1 One LMS/Content Server

In the cases where the learning network is small enough to be scaled to one server, this is the
ideal solution. By configuring the Web server to run from one domain, the issue can be solved.
When content is “imported” into the LMS, it will communicate with the LMS without any
security concerns.

Pros
 No end-user intervention is required.
 No special modifications to the content or the content package are required.
 No special modifications to the LMS are required.
 Lightweight and easy to implement.
Cons
 Applicable to learning networks that can house the LMS and all content from one domain.
 LMS and/or content delivery processing may slow due to all network traffic hitting one

server.

4.2 SCO-Fetcher

The SCO-Fetcher cross-domain scripting solution was submitted by Albert Ip and Ric Canale in
their paper, Single Copy Re-use of Sharable Content Objects1. They cover several scenarios in
which SCOs are hosted by a mix of LMSs, single Content Management Systems (CMSs) and
multiple distributed CMSs. There are several implementation specific ways to develop this
cross-domain solution, but they can all be described in a general manner.

- 8 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

During content delivery, the LMS typically opens content in a child frame or newly opened
window by changing the document.location.href of the window to the launch location of the
learning resource. The SCO Fetcher solution modifies this approach by introducing a server-side
LMS component (the SCO-Fetcher).

When a content server that is located in a different domain than the LMS hosts a SCO, a server-
side module (the SCO-Fetcher) fetches the SCO from the content server and delivers the SCO to
the Web browser. The location of the SCO-Fetcher URL is in the LMS’s domain. The SCO’s
href value from the imsmanifest.xml file becomes a parameter in a query string appended to the
URL of the SCO-Fetcher. Effectively, it is the same as appending a local path to the beginning
of the href of the SCO (which is hosted by the LMS), albeit with a slight syntactic difference.
The result of this approach is that for the browser, the SCO appears to come from the LMS’s
domain. There is no cross-domain scripting issue for the browser because the SCO and API
Instance both appear to come from the same domain.

In general, this solution is deployed as follows:

1. The LMS identifies a URL associated with the SCO for delivery.
2. If the SCO is hosted locally by the LMS, the normal LMS operation is followed.
3. If the SCO is hosted by a content server, the SCO-Fetcher, which is hosted by the LMS, uses

the remote SCO’s location as a parameter to fetch the SCO from the content server.
4. Future versions of the SCO-Fetcher may intercept the HTTP Response Object and send back

to the content server.

Figure 4.2a illustrates the basic architecture of this solution.

Client Side

Content Server

Web Browser

API Adapter

Domain: abc.com

LMS Server

Domain: xyz.com

Server Side

Javascript
SCO’s

Content

SCO
Fetcher

Figure 4.2a – SCO Fetcher Diagram

Applicable Generic Scenario(s)

 Section 3.2 Separate LMS and Content Server
 Section 3.3 Central LMS and Distributed Content Servers

- 9 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

 Section 3.4 Several LMS Servers and Distributed Content Servers

In the case where a learning network is too large to be hosted from a single domain, the SCO
Fetcher solution can be effective. Even more importantly, some LMS systems are “unaware” of
the location of the content that they deliver until run-time. If a specific SCORM environment
contains “unknown” content servers, regardless of the generic scenario (Sections 3.2 through
3.4), this solution is effective.

Pros
 No end-user intervention is required.
 No special modifications to the content or the content package are required.
 Handles the cases where the content servers cannot be specially configured before they can

be used by an LMS.
 Fairly straightforward and easy to implement and deploy.
Cons
 LMS modification is required to implement the SCO-Fetcher.
 Possible run-time performance issues may result in some implementations of the SCO-

Fetcher.

For additional details on the applicability of this solution, see the Single Copy Re-use of Sharable
Content Objects1 paper.

4.3 Proxy Configuration (Virtual Server)

Another solution to the cross-domain scripting issue requires the use of a proxy or virtual server.
This solution was submitted by Claude Ostyn in his white paper, SCORM content delivery
issues: Content from a host other than the LMS host2. In this solution, a virtual server or proxy
can be configured to redirect the HTML Response from the LMS and the content server. Each
server (LMS and content) would physically reside in their respective domains, but would appear
to a browser as being the same server. This solution may be set up as illustrated in Figure 4.3a.

- 10 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

Client Side

Content Server

Web Browser

Domain: abc.com

LMS Server

Domain: xyz.com

Server Side

Proxy Server

Domain: foo.com

API Adapter
SCO

(Content)
Javascript

Figure 4.3a – Proxy server redirects LMS and content

It is important to note that the diagram above depicts only one way that this solution may be
deployed. For instance, the LMS server itself could serve as the proxy server and the additional
proxy server illustrated above may not be needed.

Applicable Generic Scenario(s)

 Section 3.2 Separate LMS and Content Server
 Section 3.3 Central LMS and Distributed Content Servers
 Section 3.4 Several LMS Servers and Distributed Content Servers

The proxy solution is effective in all of the generic scenarios involving more that one server. To
configure the proxy solution for the expected results, the full network of servers in use must be
known, unless a generic redirection formula is used. A rule must be defined in the proxy
configuration for each server, or a generic rule may be used to automatically remap URLs that
contain a specific “trigger” string. If each server is configured manually, adding or removing a
content server to the configuration requires updating the proxy configuration file. If the
remapping is formula-based, it is possible to use the proxy to redirect requests to unintended
servers. In either case, the proxy logs will show every request and additional filtering can be
added to prevent unintended use.

However, this solution may require additional steps for certain types of deployment. For
example, in Section 3.3, a use case is described where content servers are mirrored behind
multiple firewalls and are managed by a single LMS server outside these specific firewall zones.
The content servers are distributed in order to avoid serving content from outside the firewall,
which would filter out code in violation of the mobile code policy. Each of these content servers

- 11 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

has its own domain. In this case, a proxy redirector would be required inside each firewall zone,
to redirect content requests to the content server inside the firewall. Otherwise, the user would
get the content through a proxy that was outside the firewall, thus solving the cross-domain
issue, but may disrupt the learning experience because the firewall may strip the content of
needed mobile code.

Pros
 No end-user intervention is required.
 No special modifications to the content or the content package are required.
 The same proxy server can be used for multiple content servers.
 The solution is easy to configure and deploy.
 Proxy logs can be used to monitor and audit cross-domain requests.
Cons
 Depending on the approach used, may require upfront proxy configuration specific the LMS

and all content servers that the LMS utilizes.
 May not work with a LMS implementation that does not lend itself to being hidden behind a

proxy server, unless the LMS server and the proxy server are in effect the same.
 May experience performance issues due to content traffic through the proxy server.
 Firewalls and other security measures can complicate the solution.

For additional details on the applicability of this solution, see the SCORM content delivery
issues: Content from a host other than the LMS host2 white paper.

4.4 URL Rewrite

The URL Rewrite solution is the specific implementation of the proxy server model described
above, applied to known Web servers such as Microsoft IIS or the Apache Web Server. It was
submitted by Claude Ostyn in his white paper, SCORM content delivery issues: Content from a
host other than the LMS host2. In this solution, custom or commercial utilities and/or features
built into the Web servers can be used to rewrite URLs before they are presented in a Web
browser. The prototype effort utilized two of these tools, ISAPI_Rewrite for Microsoft IIS and
Apache mod_rewrite/mod_proxy for the Apache HTTP server. These tools required
configuration rules that utilize regular expressions to remove a content object’s domain and
replace it with the LMS domain. See Appendix D for example configuration files for ISAPI
Rewrite and mod_rewrite/mod_proxy. It is important to note that the tools listed above are not
the only tools available on the market. They were selected arbitrarily and both resulted in a
successful remedy to the cross-domain issue. It is likely that many other URL rewriting tools
exist for the aforementioned Web servers and others not mentioned above.

Applicable Generic Scenario(s)

 Section 3.1 One LMS/Content Server
 Section 3.2 Separate LMS and Content Server
 Section 3.3 Central LMS and Distributed Content Servers
 Section 3.4 Several LMS Servers and Distributed Content Servers

- 12 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

Scenario variations

 Specific rules for specific content or content server addresses
 Generic rules triggered by a pattern in the URL.

The URL Rewrite solution applies to all of the generic scenarios in Section 3.0. It is effective in
solving the cross-domain issue on simple and complicated networks where the content servers
may not be known ahead of time. The main issue with this resolution is that the required
configuration is not usually understood by application level developers, because it is at the
infrastructure level. In addition, URL rewriting may not be acceptable to a specific IT
department due to control and/or security issues that arise when put in place.

Pros
 No end-user intervention is required.
 No special modifications to the content or the content package are required.
 Can be "locked" down to work with specific content and/or specific servers; alternatively,

can be configured to use generic rules that require no configuration updates when target
content or target content servers change.

 Works on complicated and large learning networks where the full network may not be
configured ahead of time.

Cons
 Some tools have an associated expensive purchasing and/or support cost.
 May be complicated and difficult to deploy as part of the LMS system; this is infrastructure,

not application level configuration.
 If generic rules are used, potential for unauthorized relaying through the proxy server

requires monitoring and/or additional security configuration.
 If generic rules are used, the LMS launch mechanism must massage the SCO URL into a

form that will trigger the rule whenever a SCO that must be served buy a "foreign" server is
launched; this requires the LMS and the proxy rules to follow the same conventions.

For additional details on the applicability of this solution, see the SCORM content delivery
issues: Content from a host other than the LMS host2 white paper.

4.5 Manipulation of document.domain

Another solution popular with the ADL Community today deals with setting the “domain”
property of the HTML document hierarchy (document.domain). This solution requires that the
end user view the content in Microsoft Internet Explorer (IE). As opposed to IE, Netscape and
other popular Web browsers do not allow the domain property to be set. This is due to the W3C
DOM Level 2 HTML specification3, which states that document.domain is “read only.” For this
resolution to work, the content’s domain must be set to the document.domain property of the
LMS or vice versa.

- 13 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

Applicable Generic Scenario(s)

 Section 3.1 One LMS/Content Server
 Section 3.2 Separate LMS and Content Server
 Section 3.3 Central LMS and Distributed Content Servers
 Section 3.4 Several LMS Servers and Distributed Content Servers

This solution applies to all of the generic scenarios, but certain restrictions must be considered.
First, the use of Microsoft IE must be mandated. Also, there are constraints in Internet Explorer
that restrict this solution to a very specific use case. The document.domain property can only be
set if the content and LMS only differ by a second level domain name. For example, Figure 4.5a
illustrates a case where the content and LMS are both in the “xyz.com” domain. The content
server contains a second level domain name “abc”. In this case, the second level domain name
associated with the content would cause a cross-domain issue. If IE was mandated for a learning
network, and the network configuration was similar to the illustration above, this solution would
be acceptable.

Client Side

Content Server

Web Browser

API Adapter SCO
(Content)

document.domain = xyz.com;

Domain: xyz.com

LMS Server

Domain: abc.xyz.com

Server Side

Javascript

Figure 4.5a – document.domain solution

Pros
 No end-user intervention is required.
 No special configuration of the content or content server is required.
Cons
 This solution works only in older versions of Microsoft IE. It no longer works when the

current security patches are applied to IE 6.0.
 LMS server must be modified to determine and set the domain of the content.
 This solution does not adhere to W3C’s DOM Level 2 HTML standard.
 All content can only have a different second-level domain name. The primary domain must

be identical.

- 14 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

This solution is not recommended because it depends on a brittle browser feature that is no
longer supported by current versions. It will work in a specific case; however, it is advisable to
use caution if deploying this solution. In addition to the “Cons” listed above, it is likely that new
versions of IE will address the non-conformance of their implementation of document.domain to
the W3C recommendation. This solution may be deprecated as the Internet Explorer browser
mature.

For more information on the document.domain solution, see the About Cross-Frame Scripting
and Security4 Microsoft Developer Network (MSDN) article and/or the Resolving Cross-Domain
Security Issues in SCORM5 paper by Harvi Singh and Prashant Bhardwaj.

4.6 SCO URL Callback Technique

The SCO URL Callback Technique was submitted to ADL by Paul Roberts, Questionmark,
August 27, 2003. This solution was originally applied to Perception, a Web server-based
assessment system that can be used to conduct a test then return results to the LMS. The solution
has been generalized in this paper to encompass any content provided by any type of content
server residing in a different domain than the LMS.

In the SCO URL Callback Technique, communication between the LMS and the content server
is via an HTML wrapper page that resides on the same server (and same domain) as the LMS.
The LMS would normally open a new browser window when calling the wrapper to start the
SCO, but it may also be contained in a child frame of the LMS.

Directly after being launched, this wrapper uses the JavaScript API to get any SCO information
from the LMS (via the SCORM API) it needs to launch the SCO then creates an HTTP call to
the content server with the required parameters in the query string. This SCO is then launched in
a new window. The URL of the SCO contains a parameter that is the location of the wrapper
used to launch the SCO. As the SCO executes, it may desire to set data. As data is set,
parameters corresponding to these events are created and appended to the wrapper URL. When
the SCO is ready to commit data to the LMS, an HTTP Request containing the wrapper’s URL
and newly added parameters is sent back to the original wrapper window. The wrapper uses the
parameters sent via HTTP from the SCO to invoke the SCORM API methods needed to track the
events that occurred during that SCO’s session (LMSSetValue).

Applicable Generic Scenario(s)

 Section 3.1 One LMS/Content Server
 Section 3.2 Separate LMS and Content Server
 Section 3.3 Central LMS and Distributed Content Servers
 Section 3.4 Several LMS Servers and Distributed Content Servers

This solution is effective in all of the generic scenarios. It handles cases where the content
servers are not known by the LMS ahead of time and works well where content may be launched
by multiple LMS systems. This solution is similar to the solution presented in the next section

- 15 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

with the exception that the additional development complexity is required during content and
content package implementation in contrast to the LMS as in the next section.

Pros
 No end-user intervention is required.
 No special modifications to the LMS are needed.
 Handles cases where the complete learning network is not known ahead of time.
Cons
 Requires content to be developed or modified to run with the LMS-served wrapper. Content

must be configured to communicate via HTTP to the wrapper based on a parameter received
during launch.

 Can be complicated and time consuming to implement or modify content.
 Only data values that are small enough to fit in a URL query string can be handled. There

are the practical limitations on the length of a URL (which are poorly documented and vary
by browser and server vendors). Also, the locator part of the URL may itself be quite long.
For example, it does not seem wise to use this technique to transfer 4096 characters of
suspend data.

 If content needs to get and set values many times during a learning session, additional
complexity needs to be considered during implementation. The solution assumes that the
SCO will need to get values, once, directly after launch and that it will set values, once, as it
finishes its session.

4.7 Signed Java Applet Solution

The Signed Java Applet Solution was submitted by Claude Ostyn in his white paper, SCORM
content delivery issues: Content from a host other than the LMS host2. This solution requires
that the content server provide a signed applet that can then talk to the LMS even if the content is
coming from another host. The sequence works like this:
The LMS determines it needs content. It launches a frameset that is specific to the LMS, but that
is actually served by the content server (or appears to be served by the content server). This
frameset contains the client side run-time component of the LMS, including a signed Applet that
will be allowed by the browser to communicate back with the LMS across host boundaries.

Applicable Generic Scenario(s)

 Section 3.1 One LMS/Content Server
 Section 3.2 Separate LMS and Content Server
 Section 3.3 Central LMS and Distributed Content Servers
 Section 3.4 Several LMS Servers and Distributed Content Servers

The Signed Java Applet Solution applies to all of the generic scenarios. The following list
details the pros and cons of this solution.

Pros
 No network configuration is required.

- 16 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

 No content or content package modifications required.
Cons
 Requires special relationship with content server that will serve the LMS specific part of the

content, e.g. LMS vendor must be allowed to copy and update this content on the content
vendor's host.

 Requires user intervention to accept the Applet as “trusted.”
 Requires a compatible Java environment that trusts the certificate for the applet is available

and enabled on the client.

4.8 Run-Time Service on Content Server

The Run-Time Service on Content Server solution was submitted by Jeff Engelbrecht in his
article, SCORM Deployment Issues in an Enterprise Distributed Learning Architecture 6. The
solution is similar in nature to the Signed Java Applet Solution discussed in the last section.

In most cases, it is assumed that the LMS server hosts the API from its own domain. This, in
many cases, is the root cause of the cross-domain scripting issue. In many scenarios, LMS
vendors are aware that content launched by their systems resides on a definitive set of known
content servers. If this is the case, an LMS provided Run-Time Service (RTS) containing the
API Instance could be supplied to the content vendor for installation on their content servers.
This creates an environment where the content and API Instance are located in the same domain,
thus eliminating any cross-domain issues.

The second aspect of this solution requires additional LMS to content server and content server
to LMS communication. An internal ADL prototype effort in conjunction with lessons learned
from the ADL Community led to some general guidelines listed in this section. Note that these
guidelines are not specified by the SCORM and are not intended for use as a SCORM
Conformance measure in any way. The flow chart depicted in Figure 4.6a presents the entire
process by which a piece of content is delivered, tracked and terminated.

- 17 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

An Activity is
identified for launch.

RTS launches
resource and API

Adapter

Data Transfer from LMS to RTS
located on Content Server
 LMS Identifier (URL)
 Unique Session Identifier
 Student Identifier
 Activity/Resource Identifier (URL)
 SCO Run-Time Data
 Navigation Information

As student
experiences

content, local SCO
data is modified

LMSCommit(),
LMSFinish(), or

Navigation Event
Data Transfer from RTS to LMS
 Unique Session Identifier
 Student Identifier
 SCO Run-Time Data
 API Method or Navigation

Request Invoked
LMS handles data

persistence and either waits
for a navigation event, or
starts this process over.

A

F

D

G

E

C

B

Figure 4.6a – Content Server RTS Flow Chart

The following list adds additional details needed to implement this solution. Several
communication mechanisms discussed are outside the scope of the SCORM and can be selected
based on the restrictions of an individual environment.

A. The LMS identifies an activity for launch. The way in which the activity is identified varies

from SCORM 1.2 to SCORM 1.3. However, this is out of scope for the cross-domain issue.
It is only important that an activity or, more importantly, its associated resource or launch
location is identified.

B. The LMS must now notify the LMS service located on the content server that it should
launch the learning resource. This communication mechanism is outside the scope of the
SCORM. This cross-domain scripting research project uncovered multiple communication
mechanisms used by the ADL Community today. See Appendix B for a brief description of
each communication mechanism.

C. An RTS component provided by the LMS obtains both the API Instance and the content from
the content server’s domain, thus eliminating any cross-domain scripting issues.

D. The student experiences the content in the web-browser. Data may be set (LMSSetValue()
or SetValue()) in a cached copy of the SCO Run-Time Data.

E. Some event occurs that requires communication with the LMS back-end. The set of events
that require RTS to LMS communication include LMSCommit(“”), LMSFinish(“”) and any
navigation event in the SCORM Version 1.2 and Commit(“”), Terminate(“”) and any
navigation event in the SCORM Version 1.3.

F. To persist data, terminate a communication session, or trigger a navigation request, the RTS
must communicate back to the LMS. As in step “B”, this communication mechanism is

- 18 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

outside the SCORM of the SCORM. See Appendix B for a brief description of each
communication mechanism.

G. The LMS receives the data sent by the RTS and stores any data to persistent storage. In
addition, the LMS may evaluate a navigation request and start this process again.

Figure 4.2b illustrates how this process may occur in an environment where an LMS is
configured to communicate with a content server outside its own domain. The letter identifiers
(A, B, C, etc) correspond directly to the last example.

Web Browser

RTS

Client Side

Content Server

API Adapter
SCO

(Content)

Domain: xyz.com

LMS Server

Domain: abc.com

Server Side

Javascript

LMS
ServiceA

B

SCO Data

C

D
E

F

G

Figure 4.2b – RTS Solution General Architecture

Applicable Generic Scenario(s)

 Section 3.1 One LMS/Content Server
 Section 3.2 Separate LMS and Content Server
 Section 3.3 Central LMS and Distributed Content Servers
 Section 3.4 Several LMS Servers and Distributed Content Servers

In the case where the learning network is small enough to be scaled to one server, this is most
likely an overcomplicated solution; however, it will work. In all other cases, this solution is
extremely effective. It is also an excellent solution where security is a main concern. This is due
to the communication mechanism between the LMS and RTS. An organization can select a
communication mechanism that is acceptable to the organization’s security policies.

Pros
 No end-user intervention is required.
 No special modifications to the content or the content package are required.
Cons
 Requires the content vendor and LMS vendor to establish a relationship to install and

configure the LMS RTS on all content servers.
 Requires LMS modification so that the API is part of a RTS installed on the content servers.
 Can be complicated and time-consuming to implement and deploy.

- 19 -
Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

For additional details on the applicability of this solution, see the Problems of Implementing
SCORM in an Enterprise Distributed Learning Architecture6 paper.

Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

APPENDIX A: ACRONYM LIST

ADL Advanced Distributed Learning
API Application Program Interface
ASP Active Server Pages
ASCII American Standard Code for Information Interchange
CMS Content Management System
DOM Document Object Model
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IE Internet Explorer
IIS Internet Information Services
IT Information Technology
JSP JavaServer Pages
LMS Learning Management System
MSDN Microsoft Developer Network
RTE Run-Time Environment
RTS Run-Time Service
SCO Sharable Content Object
SCORM Sharable Content Object Reference Model
URL Universal Resource Locator
W3C World Wide Web Consortium
XML eXtensible Markup Language

Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

APPENDIX B: RTS TO LMS COMMUNICATION

The Solution described in Section 4.6, Run-Time Service (RTS) on the content server requires an
alternative communication mechanism between the RTS located on the content server and the
LMS. As stated in Section 4.6, this communication is outside the scope of the SCORM.
However, some general guidance was presented including the minimum information that must be
passed at different times during course execution. This solution was gathered from several in the
ADL Community. Each vendor that provided this solution used a different mechanism for this
communication. Each communication mechanism is described below. When implementing this
cross-domain scripting resolution, a communication mechanism acceptable to the organization’s
IT department’s policies can be selected from the list below or any other means acceptable for
specific organization can be used.

Hypertext Transfer Protocol (HTTP)
Several organizations developed the proprietary communication described in Section 4.6 of this
document with HTTP. HTTP is one of the protocols that powers the World Wide Web.
Typically, when information needs to be transferred between the RTS and the LMS or vice
versa, a package is created. This package contains text that corresponds to the information
needed by the LMS or RTS. After the package is created, a “Request” is “Posted” to a URL
corresponding to the LMS or RTS. A server-side component is used to read in the Request and
parse out the relevant information. More information on HTTP can be found at
http://www.w3.org/Protocols/.

Web Services
Web services provide a standard means of communication among different software applications
involved in presenting dynamic context-driven information to the user. The communication
mechanism described in section 4.6 can be implemented with a Web Service approach. The
scenario requires a Web Service on the LMS and the RTS that both are listening for an XML
message from the other. In order to promote interoperability and extensibility among these
applications, as well as to allow them to be combined in order to perform more complex
operations, a standard reference architecture is needed. The Web Services Architecture Working
Group at W3C is tasked with producing this reference architecture. More information can be
found at http://www.w3.org/2002/ws/.

Sockets
The SCORM Sample Run-Time Environment, available at http://www.adlnet.org is a free
software product that implements the SCORM-imposed requirements of an LMS system. The
Sample RTE implements the SCORM API as a Java Applet. The Applet is a client-side
component that resides in the end-users browser. In order for it to communicate with the server-
side LMS component, a communication mechanism needed to be established between the client
and server sides. Sockets were selected for this communication mechanism. Although this is not
the same problem as described in section 4.6, the general approach is still the same. Sockets can
be opened and communicated through in many programming languages, in many different ways.

http://www.w3.org/Protocols/
http://www.w3.org/2002/ws/
http://www.adlnet.org

Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

See the source code that ships with the Sample RTE for an example of how to use sockets for
this communication. Even using sockets, communication from a client to a server in a domain
that is not the same that served the client requires that the Java Applet be signed, and that the
user accept the certificate before the communication can take place.

Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

APPENDIX C: REFERENCES

1. Ip, A & Canale, R., Single Copy Re-use of Sharable Content Objects. 2003.
Available at: http://koala.dls.au.com/scorm/

2. Ostyn, C., SCORM content delivery issues: Content from a host other than the LMS host.
December 3, 2002.

3. W3C, Document Object Model (DOM) Level 2 HTML Specification, Version 1.0.
Available at: http://www.w3.org/TR/DOM-Level-3-HTML/

4. MSDN, About Cross-Frame Scripting and Security. 2003.
Available at:
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/om/xframe_scripting_se
curity.asp)

5. Bhardwaj, P & Singh, H., Resolving Cross-Domain Security Issues in SCORM.
Available at: http://www.centra.com/products/belearning/scormwhitepaper.pdf

6. Engelbrecht, J., SCORM Deployment Issues in an Enterprise Distributed Learning
Architecture. The eLearning Developers’ Journal, Feb 18, 2003.
Available at: http://www.elearningguild.com/pdf/2/021803MGT-H.pdf

7. Kraan, W., A feature or a bug; SCORM and cross domain scripting. The Centre for
Educational Technology Interoperability Standards (CETIS). June 22, 2003
Available at: http://www.cetis.ac.uk/content/20030622203659/printArticle

8. Robson, R., E-learning Meets Security Policies. E-learning Magazine. February/March 2003

http://koala.dls.au.com/scorm/
http://www.w3.org/TR/DOM-Level-3-HTML/
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/om/xframe_scripting_security.asp
http://www.centra.com/products/belearning/scormwhitepaper.pdf
http://www.elearningguild.com/pdf/2/021803MGT-H.pdf
http://www.cetis.ac.uk/content/20030622203659/printArticle

Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

APPENDIX D: EXAMPLE CONFIGURATION FILES

The following code is an excerpt taken from the httpd.ini file that controls ISAPI Rewrite, a
commercial utility for Microsoft IIS server, as described in Section 4.4 of this document. It was
submitted for inclusion in this paper by Claude Ostyn. This is not an endorsement of ISAPI
Rewrite, but is included as an example to guide your own research. You can find more
information at www.isapirewrite.com.

3600 = 1 hour
CacheClockRate 3600

RepeatLimit 32

Block external access to the httpd.ini and httpd.parse.errors files
RewriteRule /httpd(?:\.ini|\.parse\.errors).* [F,I,O]
Block external access to the Helper ISAPI Extension
RewriteRule .*\.isrwhlp [F,I,O]

Test proxy
RewriteCond URL (.*)
RewriteHeader Old-URL: ^$ $1

The following assumes that the IIS server name is "lms"
Redirect using generic ~p~ pattern
For example http://lms/~p~/foobar.com/foo/bar/sco.htm will
return content to the browser from
http://foobar.com/foo/bar/sco.htm
as if it came from
http://lms/~p~/foobar.com/foo/bar/sco.htm
RewriteProxy (.*)~p~/(.*) http\://$2 [F,U]

Redirect using a specific pattern tied to a specific server
For example http://lms/saranjan/portugal.htm will
return content to the browser from
http://saranjan.com/portugal.htm
as if it came from
http://lms/saranjan/portugal.htm
RewriteProxy /saranjan(.*) http\://saranjan.com$1 [F,I,U]

Cross-Domain Scripting Issue
 Version: 1.0

© 2003 Advanced Distributed Learning (ADL)

The following code is an excerpt taken from the httpd.conf file that controls the Apache HTTP
Server. Note that mod_rewrite and mod_proxy are both Apache features that are disabled by
default. The Apache http.conf file needs to be configured to enable these features before the
following code will work. This code was submitted for inclusion in this paper by Claude Ostyn.
This is not an endorsement of Apache HTTP Server, but is included as an example to guide your
own research.

Security
See Apache documentation for the various ways the server can be
secured. This is generic web server administration though.
The following should be customized by web server admin. based
on local rules
<Proxy *>
Order deny,allow
Deny from all
Allow from all
</Proxy>

RewriteEngine on

#CRITICAL minimal security.
#Security to prevent free ride e.g. proxy:http://www.example.com
RewriteRule ^proxy:.* - [F]

Redirect via proxy to a specific remote server through this server.
through a sentinel directory name used to trigger the rule, as in
http://<host>/snj/sitemap.htm
The RedirectMatch is not required, but necessary if you want to
handle the situation where
IE won't automatically add a trailing slash to directory name,
e.g., http://www/somestuff -- which leaves the proxied
pages full of slashless (and therefore broken) URLs.
RedirectMatch ^/snj$ http://www.saranjan.com/

ProxyPass by itself makes the browser aware of the redirect and does
not work for SCORM
ProxyPass /snj/ http://www.saranjan.com/
But adding ProxyPassReverse to ProxyPass works!
ProxyPassReverse /snj/ http://www.saranjan.com/

But what if we want to use a generic proxy trigger in the URL, e.g.
a URL in the form http://<host>/~p~/www.foo.com/something.htm?
The directive below works!
Note that the following will *not* if the URL ends up with a directory
name that is not followed by a slash, in the hope of finding the
default file. It will seem to work but the links will not be followed,
e.g. graphics won't show, because this will be handled as a redirect
rather than a proxy. To solve this, ensure that the URL
includes either a correct file name, or ends with a slash, or
add a rule to do this massaging as in the RedirectMatch example above.

RewriteRule (.*)~p~/(.*) http\://$2 [P,L]
End Claude's proxy rules

	INTRODUCTION
	Description

	SCORM API OVERVIEW
	CROSS-DOMAIN SCRIPTING SCENARIOS
	One LMS/Content Server
	Separate LMS Server and Content Server
	Central LMS Server and Distributed Content Servers
	Several LMS Servers and Distributed Content Servers

	CROSS-DOMAIN SCRIPTING SOLUTIONS
	Locate Content on LMS Server or in LMS’s Domain
	SCO-Fetcher
	Proxy Configuration (Virtual Server)
	URL Rewrite
	Manipulation of document.domain
	SCO URL Callback Technique
	Signed Java Applet Solution
	Run-Time Service on Content Server

